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Machine learning uses established and annotated resources as an illustration to 

retrieve and accumulate information. It predicts an unseen data and classify it in a 

defined category. Furthermore, giving us a multidisciplinary statistical approach, 

which can be looked upon as a combination of human intelligence with computer 

accuracy and memory. Self-experience is utilised to learn and draw patterns in the 

submitted data. Additionally, with increase in experience; its scrutiny of decision 

making also increases. Recent developments in the field of plant phenotyping 

termed as high throughput phenotyping has led breeders and researcher to look at a 

specific trait more broadly at individual and combinatorial level. Plant architecture 

can vary in different conditions and can indicate the state of agronomical important 

traits and the physiological function associated with them.  

 

Machine learning architectures in combination with public datasets enlisted in table 1 

are used for Image based phenotyping. An important application of machine learning 

is high throughput phenotyping where automated platforms such as UAV, ground 

and aircraft robot equipped with multiple sensors  inducing remote sensing, Spectro 

radiometry, Light Detection and Ranging (LIDAR) , visible to far-infrared  

hyperspectral , thermal , fluorescence , 3D laser scanning , trichromatic (RGB), UV 

illumination and halogen excitation are used to capture and store data in the form of 

images  which are further processed as training or testing datasets by machine 

learning supervised or unsupervised algorithms. The valuation is normalised by an 

inclusive range of absorbance index and Leaf Reflectance parameters recorded by 

the sensors which can trace non-photosynthetically active constituents, water, 

nitrogen and chlorophyll content [4-5]. Various studies which have used image based 

high throughput phenotyping are enlisted in table 1. 

 

The available plethora of insightful information through research projects is not easily 

accessible by the farming community. It is certainly difficult for them to collect the 

samples and take them to a specific laboratory to get them tested for any bizarre 

phenotype. Smartphone assisted diagnostic approaches can bridge this gap by 

providing an easily available, economical and approachable way especially for 

smallholder farmers and researchers with limited funds. The use of broad-spectrum 

pesticide and fertilizer can be ineffective to treat a specific condition and instead 

increase the problem in certain cases when overused.  
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Automated agricultural drones mounted with artificial intelligence technologies can 

be used for the selective spray of water, specific nutrients, insecticide and herbicide 

wherever needed. When the above is equipped with a high-resolution HD camera, It 

can capture images detailing about the plant phenotype, soil quality, potential pest 

invasions more quickly and precisely. This can lead to the development of less 

expensive and higher productivity farming approach ensuring food security and 

higher investment returns. Algorithms which can differentiate more than one 

parameter simultaneously and concurrently are the need of the hour. 

 

The high throughput phenotyping which has been widely used in plant-disease 

profiling should be parallelly looked out for other physiological traits in varied and 

diverse experimental replicates. Exploration of various absorption spectra and 

secondary metabolite image-based mapping can lead to the use of identified and 

unidentified medicinal plants in low research cost. Artificial intelligence studies like 

disease forecasting in accordance with the weather conditions are highly 

translational and should be encouraged [32]. Machine learning is the future of the 

plant science research but only if the limitation in the form of an available narrow 

database range is well dealt with. 
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TABLE.1- Machine learning in image based high throughput phenotyping 
S.
no 

USAGE ALGORITHM/ 
CLASSIFIERS 

SENSOR ASSOCIATED 
TRAIT 

ORGANISM 
OF STUDY 

REFER
ENCE 

1. Biotic Stress 
Identification  
And 
Classification 

NN Spectral/ 
Hyperspectral 
Images, 
Thermography 

Puccinia 
striiformis 
f.sp.Tritici  
infection 

Wheat 
 

[6] 
 
 

Thermal 
Images 

Alternaria 
infection 

SVM Multicolour 
Fluorescence, 
Thermography 

Oidium   
neolycopersici 
infection 

 

Tomato                            
[7] 
 

LR 
SVM 
NN 

Portable Field 
Spectrometer, 
Spectroradiom
eter, Infrared 
Thermometer 

Pathogenic 
bacteria 

Melon  
 

 

[8] 
 

RF Fluorescence 
Imaging 

Septoria tritici 
blotch 

Wheat  
Lemon 

[9] 

myrtle rust Myrtle Tress [10] 

SVM 
KNN 
QDA 
LDA 

Spectroscopy, 
UAV- And 
Aircraft-Based 
Sensors, 
Spectroradiom
eter  

Huanglongbing 
(HLB) infection 

Citrus  
 
 

 

[11-13] 

SAM Remote 
sensing  
 

Heterodera 
schachtii,  
Rhizoctonia 
solani 
infection 

Sugar Beet  
 

[14] 
 

Bayes factor  
DAR 

Hyperspectral 
images  

Rust, net blotch, 
and powdery 
mildew disease 

Barley 
 

 

[15] 

ANN variant  
 

RGB images Bacterial soft 
rot, 
Phythopthora 
black rot, 
Bacterial brown 
spot 

Orchid 
 

[16] 

2. Abiotic Stress 
(Drought) 

SVM  
GPC 

Visible 
/Thermal 
Images 

 
Water stress 

Spinach  [17] 

SVIM Tomato [18] 

DAR Hyperspectral Barley [19] 

3. Presence of 
toxins 

HBBE 
MLPNN 
LDA 

CCD images  Aflatoxins Chili Pepper [20] 

4. Image-based 
plant 
phenotyping 

CNN Images taken 
from Canon 
650D and 

QTL analysis  
by root and 
shoot mapping 

Wheat [21] 
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Nikon D5100 
DSLR camera 

5. 3D 
phenotyping 
of entire plant 

Segmentation 
Algorithm 

RGB-depth 
camera 

Shoot and 
segmented leaf 
architecture 

Rosebush [22] 

6. Pollution LDA k means RGB images 
Clover  

Ozone Trifolium 
Subterraneu
m L. 

[23] 

7. Herbicide 
tolerance  

Obia UAV-based 
RGB images 
and 
multispectral 
image 

Weed 
identification 

Sunflower [24] 

8. Nutrient 
deficiency 

SVM Variant 
 
 

Scanned 
images  
 
 

Nitrogen, 
phosphorus, 
and potassium 
(NPK) stress. 

Rice  
 
 

 
[25] 

DCNN RGB images Iron and 
potassium 

Soyabean [26] 

9. Canopies and 
soil 
measurement
s 

NN Hyperspectral 
images 

Phytophthora 
infestans 

Tomato [27] 

10
. 

Preplanning 
risk prediction 

MR, NN, RF Self-generated 
dataset 

Stagonospora 
nodorum blotch 
 

Wheat [28] 

11
. 

Plant 
physiological 
stress 

NDVI Optical remote 
sensor 

leaf chlorophyll 
content 
estimation 
Nitrogen 
sensing 

Spring 
Maize  
 

[29] 

12
. 

Digitized 
natural history 
collection 
analysis 

CNN RGB Images Mercury-stained 
specimens 

Herbarium [30] 

13
. 

Plant 
identification 

Pl@ntNet Images via 
social network 

Multiorgan 
Identification 

2200 Plant 
Species 

[31] 

 
Public Image-
based 
datasets/databas
e 

 
plant village, Cifar-10, Real field, Wheat Disease Database 2017, Flavia, 
Foliage, LeafSnap3, Real wheat field, Real environment, CASC-IFW, 
Bisque, Swedish leaf, Oxford Flower 17, Oxford Flower 1o2, TRY, 
Imagenet.  
 

Absorption 
Spectral 
 

CAI—Cellulose Absorption Index, LCA—Lignin-Cellulose Absorption 
Index, NTDI—Normalized Difference Tillage Index, LWVI-1 – Normalized 
Difference, Leaf water VI 2, DLAI—Difference Leaf Area Index, PWI—
Plant Water Index, NLI—Nonlinear Vegetation Index, DWSI—Disease 
Water Stress Index, NDVI—Normalized Difference, Vegetation Index, 
MCARI—Modified Chlorophyll Absorption Ratio Index, GI—Greenness 
Index, CAR—Chlorophyll Absorption Ratio, GNDVI—Green Normalized 
Difference Vegetation Index, OSAVI—Optimized Soil Adjusted Vegetation 
Index, CI r—Coloration Index red,  CI g—Coloration Index green 
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